
Attack of the Exponentials

Damiano Mazza

LIPN, CNRS – Université Paris 13, France

LL2016, Lyon
school: 7 and 8 November 2016

D. Mazza (LIPN) Attack of the Exponentials LL2016 1 / 26

Something is missing. . .

I Consider the following tautologies:
1. ¬X ∨ ¬Y ∨ X ;
2. (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z .

I Are they provable in multiplicative linear logic?

D. Mazza (LIPN) Attack of the Exponentials LL2016 2 / 26

Something is missing. . .

I Consider the following tautologies:
1. ¬X ∨ ¬Y ∨ X ;
2. (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z .

I Are they provable in multiplicative linear logic?

D. Mazza (LIPN) Attack of the Exponentials LL2016 2 / 26

Something is missing. . .

I Consider the following tautologies:
1. ¬X ∨ ¬Y ∨ X ;
2. (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z .

I Are they provable in multiplicative linear logic?

`X⊥ Y⊥ X`

D. Mazza (LIPN) Attack of the Exponentials LL2016 2 / 26

Something is missing. . .

I Consider the following tautologies:
1. ¬X ∨ ¬Y ∨ X ;
2. (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z .

I Are they provable in multiplicative linear logic?

X⊥ Y⊥ X

D. Mazza (LIPN) Attack of the Exponentials LL2016 2 / 26

Something is missing. . .

I Consider the following tautologies:
1. ¬X ∨ ¬Y ∨ X ;
2. (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z .

I Are they provable in multiplicative linear logic?

ax

X⊥ Y⊥ X

D. Mazza (LIPN) Attack of the Exponentials LL2016 2 / 26

Something is missing. . .

I Consider the following tautologies:
1. ¬X ∨ ¬Y ∨ X ;
2. (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z .

I Are they provable in multiplicative linear logic?

ax

X⊥ Y⊥ X

D. Mazza (LIPN) Attack of the Exponentials LL2016 2 / 26

Something is missing. . .

I Consider the following tautologies:
1. ¬X ∨ ¬Y ∨ X ;
2. (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z .

I Are they provable in multiplicative linear logic?

(X ⊗ Y ⊗ Z⊥) X⊥ Z(X ⊗ Y⊥) ` ``

D. Mazza (LIPN) Attack of the Exponentials LL2016 2 / 26

Something is missing. . .

I Consider the following tautologies:
1. ¬X ∨ ¬Y ∨ X ;
2. (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z .

I Are they provable in multiplicative linear logic?

X ⊗ Y⊥ X⊥ ZX ⊗ Y ⊗ Z⊥

D. Mazza (LIPN) Attack of the Exponentials LL2016 2 / 26

Something is missing. . .

I Consider the following tautologies:
1. ¬X ∨ ¬Y ∨ X ;
2. (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z .

I Are they provable in multiplicative linear logic?

X ⊗ Y⊥

⊗

⊗ ⊗

X Y Z⊥ Y⊥X X⊥ Z

X⊥ ZX ⊗ Y ⊗ Z⊥

D. Mazza (LIPN) Attack of the Exponentials LL2016 2 / 26

Something is missing. . .

I Consider the following tautologies:
1. ¬X ∨ ¬Y ∨ X ;
2. (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z .

I Are they provable in multiplicative linear logic?

X ⊗ Y⊥

⊗

⊗ ⊗

ax
X Y Z⊥ Y⊥X X⊥ Z

X⊥ ZX ⊗ Y ⊗ Z⊥

D. Mazza (LIPN) Attack of the Exponentials LL2016 2 / 26

Something is missing. . .

I Consider the following tautologies:
1. ¬X ∨ ¬Y ∨ X ;
2. (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z .

I Are they provable in multiplicative linear logic?

X ⊗ Y⊥

⊗

⊗ ⊗

ax

ax

X Y Z⊥ Y⊥X X⊥ Z

X⊥ ZX ⊗ Y ⊗ Z⊥

D. Mazza (LIPN) Attack of the Exponentials LL2016 2 / 26

Something is missing. . .

I Consider the following tautologies:
1. ¬X ∨ ¬Y ∨ X ;
2. (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z .

I Are they provable in multiplicative linear logic?

X ⊗ Y⊥

⊗

⊗ ⊗

ax

ax

X Y Z⊥ Y⊥X X⊥ Z

X⊥ ZX ⊗ Y ⊗ Z⊥

D. Mazza (LIPN) Attack of the Exponentials LL2016 2 / 26

Structural rules

I Mathematical truth is cumulative and inexhaustible:

Γ ` C weakening
Γ,A ` C

Γ,A,A ` C
contraction

Γ,A ` C

I Linear logic replaces truth with the notion of resource:

I no structural rules on arbitrary
formulas;

I in other words, no arbitrary
erasing and duplication:

A 6(1
A 6(A⊗ A

D. Mazza (LIPN) Attack of the Exponentials LL2016 3 / 26

Structural rules

I Mathematical truth is cumulative and inexhaustible:

Γ ` C weakening
Γ,A ` C

Γ,A,A ` C
contraction

Γ,A ` C

I Linear logic replaces truth with the notion of resource:

I no structural rules on arbitrary
formulas;

I in other words, no arbitrary
erasing and duplication:

A 6(1
A 6(A⊗ A

D. Mazza (LIPN) Attack of the Exponentials LL2016 3 / 26

The “why not” modality

I We introduce a unary connective (modality) “why not”, denoted by ?.
I Structural rules are allowed only on formulas of the form ?A:

contraction?c

?A

?A?A

?w

?A

weakening

I We need to explicitly declare a formula as “contractible”:

?d

A

?A

dereliction

D. Mazza (LIPN) Attack of the Exponentials LL2016 4 / 26

Revisiting classical tautologies

I Instead of ¬X ∨ ¬Y ∨ X , we prove X⊥ ` ?Y⊥ ` X :

X

ax

?w

?Y⊥X⊥

D. Mazza (LIPN) Attack of the Exponentials LL2016 5 / 26

Revisiting classical tautologies

I Instead of (X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y) ∨ ¬X ∨ Z , we prove
(X ⊗ Y ⊗ Z⊥) ` (X ⊗ Y⊥) ` ?X⊥ ` Z :

?X⊥

⊗

⊗ ⊗

ax

ax

ax
ax

?X⊥ ZX ⊗ Y ⊗ Z⊥ X ⊗ Y⊥

Y Z⊥ Y⊥ Z

?c

?d ?d

?X⊥

X
X

X⊥ X⊥

D. Mazza (LIPN) Attack of the Exponentials LL2016 6 / 26

The meaning of linear sequents

I In classical logic, ` Γ means “one of the formulas in Γ is necessarily true”.
I This is because Γ ` ∆ is

∧
Γ⇒

∨
∆.

I In linear logic, Γ ` ∆ is
⊗

Γ(
˙

∆, with A(B := A⊥ ` B.
I What does that mean???

A⊗ B simultaneous availability of both A and B
A(B A is needed to yield B (loosing A in the process)
A` B A⊥ is needed to yield B and B⊥ is needed to yield A

I So, in linear logic, ` A1, . . . ,An means
for any 1 ≤ i ≤ n, A⊥1 , . . . ,A

⊥
i−1,A

⊥
i+1, . . . ,A

⊥
n are needed to obtain Ai .

I The meaning of “why not” is best understood via duality:

?A A⊥ is needed an unspecified number of times
!A A is available at will

D. Mazza (LIPN) Attack of the Exponentials LL2016 7 / 26

The “of course” modality

I The dual of “why not” is “of course”, or “bang”, denoted !.
I Two alternative presentations in nets:

I inductive: nets are defined inductively on their exponential depth:
I depth 0: as for MLL, with nodes ax, cut, ⊗, `, ?d, ?w and ?c;
I depth n > 0: as above but also with nodes of the form

. . .
!ρ

?C1 ?Cn !A

where ρ is a net of depth < n, of conclusions ?C1, . . . , ?Cn,A.
I global: as depth 0 above but also with nodes ! and pax; each pax has an

associated !, and each ! has an associated subnet, called box:

!
ρ

pax !pax
A

!A?C1 ?Cn. . .

?Cn. . .?C1

A

!A

?A

?A

pax

Boxes are either disjoint or included one in the other.

D. Mazza (LIPN) Attack of the Exponentials LL2016 8 / 26

Cut-elimination: dereliction

?A⊥

ρ

A
?C1 ?Cn. . .

A⊥

cut

cut

?d

A⊥

−→

ρ

pax !pax
A?Cn. . .?C1

?C1 . . . ?Cn
!A

Dereliction “opens” a box.

D. Mazza (LIPN) Attack of the Exponentials LL2016 9 / 26

Cut-elimination: weakening

?A⊥
paxpax

?C1 . . . ?Cn

?w?w

?C1 . . . ?Cncut

?w
−→

ρ

!

A?Cn. . .?C1

!A

Weakening erases a box.

D. Mazza (LIPN) Attack of the Exponentials LL2016 10 / 26

Cut-elimination: contraction

?C1

cut

ρ

pax !pax
A?Cn. . .?C1

?C1 . . . ?Cn
!A

?c

?A⊥

?A⊥ ?A⊥

−→

ρ

pax !pax
A?Cn. . .?C1

!A

ρ

pax !pax
A?Cn. . .?C1

!A
cut

cut

?A⊥ ?A⊥

?c?c
. . .

?C1 ?Cn

.
?C1 ?Cn

?Cn

Contraction duplicates a box.

D. Mazza (LIPN) Attack of the Exponentials LL2016 11 / 26

Cut-elimination: commutative step

?Cn cut

ρ

pax !pax
A?Cn. . .?C1

!A

ρ′

?A⊥ B

paxpax

−→

!

?C1 ?Cn. . .
. . .

!B

. . .

cut

ρ

pax !pax
A?Cn. . .?C1

?C1 . . . ?Cn
!A

pax !

ρ′

. . .
?A⊥

?A⊥ B

!B

. . .

?C1 . . .

A box may “enter” inside another box.

D. Mazza (LIPN) Attack of the Exponentials LL2016 12 / 26

Correctness

I Contractions are treated like ` nodes:

or ?c ?c ?c

I Boxes are “collapsed” to a single node (that’s already the case in the
inductive formulation):

. . .

pax !pax
. . .

. . .

I A proof net is a net such that:
I every switching (graph obtained as above) is acyclic;
I the contents of every box is a proof net.

I Preserved by cut-elimination: ρ correct, ρ −→ ρ′ implies ρ′ correct.
I Lack of connectedness causes a little technical problem. . .

D. Mazza (LIPN) Attack of the Exponentials LL2016 13 / 26

Exponentials in sequent calculus

I Sequent calculus rules for the exponential modalities:

` Γ,A
?d

` Γ, ?A
` Γ

?w
` Γ, ?A

` Γ, ?A, ?A
?c

` Γ, ?A

` ?Γ,A
!

` ?Γ, !A

I Exponential axioms (“storage laws”):
functoriality: !(A(B)(!A(!B
dereliction: !A(A (retrieve)

digging: !A(!!A (indirection)
weakening: !A(1 (discard)
contraction: !A(!A⊗ !A (copy)

Categorically: !(−) is a monoidal comonad and free coalgebras are comonoids.

I The exponential isomorphism: !(A & B) ∼= !A⊗ !B (just like 2a+b = 2a · 2b)

I Lack of connectedness in proof nets corresponds to mix:
` Γ1 . . . ` Γn mix
` Γ1, . . . , Γn

D. Mazza (LIPN) Attack of the Exponentials LL2016 14 / 26

Recovering intuitionistic and classical logic

I Intuitionistic logic is actually a fragment of linear logic (at any order):

A,B ::= X !A(B ∀ξ.A ∃ξ.!A 0 A & B !A⊕ !B
X A⇒ B ∀ξ.A ∃ξ.A ⊥ A ∧ B A ∨ B

Theorem (Embedding of intuitionistic logic)

Γ ` A is provable in LJ iff !Γ ` A is provable in the above fragment of LL.
Categorically: intuitionistic logic is the Kleisli category of the comonad !(−).

I Other translations of intuitionistic logic in linear logic exist (CbN vs. CbV).
I Classical logic may also be translated:

X+ := ?!X (¬X)+ := ?!?X⊥

(A ∨ B)+ := A+ ` B+ (A ∧ B)+ := ?(!A+ ⊗ !B+)

(∀x .A)+ := ?!∀x .A+ (∃x .A)+ := ?!?∃x .!A+

The principle is the generalized Gödel translation AF = (A⇒ F)⇒ F , with F = ⊥.

D. Mazza (LIPN) Attack of the Exponentials LL2016 15 / 26

Example: the drinker’s formula

I In any bar, there’s someone such that, if he drinks, then everyone drinks:

F := ∃x(D(x)⇒ ∀y D(y)).

I Proof: either everyone’s drinking, or there’s someone who is not (MrSober).
I 1st case: D(z)⇒ ∀y D(y) is true for any z , anybody is the existential witness;
I 2nd case: D(MrSober)⇒ ∀y D(y) is true, so MrSober is our witness.

We used excluded middle (indeed, F is not provable intuitionistically).

In LK:

ax
` Dy ,¬Dy

weak
` Dy ,¬Dy , ∀yDy

∨
` Dy ,¬Dy ∨ ∀yDy

∃
` Dy ,F

∀
` ∀yDy ,F

weak
` ¬Dz, ∀yDy ,F

∨
` ¬Dz ∨ ∀yDy ,F

∃
` F ,F

contr
` F

In LL:

F+ ∼ ?∃x(?D(x)⊥ ` ?∀yD(y))

?∃x(?Dx⊥ ` ?∀yDy)

∀

?d

ax

?d

`

∃

?d

?w

`

∃

?c

?d

?∃x(?Dx⊥ ` ?∀yDy)

Dy⊥

?w

?Dz⊥

Dy

?Dy⊥ ?∀yDy∀yDy

?∀yDy
?Dy⊥ ` ?∀yDy

?Dz⊥ ` ?∀yDy

∃x(?Dx⊥ ` ?∀yDy)

∃x(?Dx⊥ ` ?∀yDy)

?∃x(?Dx⊥ ` ?∀yDy)

D. Mazza (LIPN) Attack of the Exponentials LL2016 16 / 26

Curry-Howard: computation in linear logic

The Curry-Howard correspondence

logic computer science
formula type
proof program

cut-elimination execution

I Moral of the story: proof nets are programs!
I In particular: derivations of propositional NJ are simply-typed λ-terms.
I NJ (via LJ) is a fragment of LL =⇒ the λ-calculus embeds in proof nets.
I The decompostion A⇒ B = !A(B appears at the level of execution:

(λx.M)N→M{N/x} vs. (λx.M)N→M[N/x]→∗M{N/x}[N/x]→M{N/x}.

D. Mazza (LIPN) Attack of the Exponentials LL2016 17 / 26

Example: Booleans and if. . . then. . . else

I Let

Bool := X ⇒ X ⇒ X = !X (!X (X = ?X⊥ ` (?X⊥ ` X).

I Let

true :=

ax
` X⊥,X

?d
` ?X⊥,X

?w
` ?X⊥, ?X⊥,X `
` ?X⊥, ?X⊥ ` X `

` Bool

?X⊥ ` X

Bool

`

ax

`
?d ?w

X

?X⊥

?X⊥

X⊥

D. Mazza (LIPN) Attack of the Exponentials LL2016 18 / 26

Example: Booleans and if. . . then. . . else

I Let

Bool := X ⇒ X ⇒ X = !X (!X (X = ?X⊥ ` (?X⊥ ` X).

I Let

false :=

ax
` X⊥,X

?d
` ?X⊥,X `
` ?X⊥ ` X

?w
` ?X⊥, ?X⊥ ` X `

` Bool

?X⊥ ` X

Bool

ax

`
`

?w ?d

XX⊥

?X⊥

?X⊥

D. Mazza (LIPN) Attack of the Exponentials LL2016 18 / 26

Example: Booleans and if. . . then. . . else

I Let

Bool := X ⇒ X ⇒ X = !X (!X (X = ?X⊥ ` (?X⊥ ` X).

I Let

false :=

Bool Bool

`

ax

`
?d ?w

ax

`
`

?w ?d

X

?X⊥

?X⊥

X⊥

?X⊥ ` X

XX⊥

?X⊥

?X⊥

?X⊥ ` X

true :=

D. Mazza (LIPN) Attack of the Exponentials LL2016 18 / 26

Example: Booleans and if. . . then. . . else

I We have
Bool⊥ = !X ⊗ (!X ⊗ X⊥)

I Let ρ, ρ′ : A and let

x : Bool⊥[A/X]

!

ρ′

!

ρ

⊗

⊗

ax

A
!A

!A

A⊥

A A

!A⊗ A⊥

if x then ρ else ρ′ :=

D. Mazza (LIPN) Attack of the Exponentials LL2016 18 / 26

Example: Booleans and if. . . then. . . else

I Let us compute if (true[A/X]) then ρ else ρ′:

?w !

ρ′

!

ρ

⊗

⊗

ax

cut

`

ax

`
?d

I Observation: apart from type-checking the cut, we never used types/formulas.

D. Mazza (LIPN) Attack of the Exponentials LL2016 19 / 26

Example: Booleans and if. . . then. . . else

I Let us compute if (true[A/X]) then ρ else ρ′:

cut

!

ρ′

!

ρ

⊗

ax

ax

`
?d ?w

cut

I Observation: apart from type-checking the cut, we never used types/formulas.

D. Mazza (LIPN) Attack of the Exponentials LL2016 19 / 26

Example: Booleans and if. . . then. . . else

I Let us compute if (true[A/X]) then ρ else ρ′:

cut

!

ρ′

!

ρ

ax

ax

?d ?w

cut

cut

I Observation: apart from type-checking the cut, we never used types/formulas.

D. Mazza (LIPN) Attack of the Exponentials LL2016 19 / 26

Example: Booleans and if. . . then. . . else

I Let us compute if (true[A/X]) then ρ else ρ′:

cut

!

ρ

ax

ax

?d

cut

I Observation: apart from type-checking the cut, we never used types/formulas.

D. Mazza (LIPN) Attack of the Exponentials LL2016 19 / 26

Example: Booleans and if. . . then. . . else

I Let us compute if (true[A/X]) then ρ else ρ′:

ρ

ax

ax

cut

cut

I Observation: apart from type-checking the cut, we never used types/formulas.

D. Mazza (LIPN) Attack of the Exponentials LL2016 19 / 26

Example: Booleans and if. . . then. . . else

I Let us compute if (true[A/X]) then ρ else ρ′:

cut

ax

ρ

I Observation: apart from type-checking the cut, we never used types/formulas.

D. Mazza (LIPN) Attack of the Exponentials LL2016 19 / 26

Example: Booleans and if. . . then. . . else

I Let us compute if (true[A/X]) then ρ else ρ′:

ρ

I Observation: apart from type-checking the cut, we never used types/formulas.

D. Mazza (LIPN) Attack of the Exponentials LL2016 19 / 26

Example: Booleans and if. . . then. . . else

I Let us compute if (true[A/X]) then ρ else ρ′:

ρ

I Observation: apart from type-checking the cut, we never used types/formulas.

D. Mazza (LIPN) Attack of the Exponentials LL2016 19 / 26

Untyped nets

I In fact, cut-elimination in nets makes sense even without formulas!

cut

ax

?d

?c

!

ax

?d

?c

I Untyped nets are a Turing-complete model of computation.
I Actually, the above net may be typed in presence of !R⊥ = R (Russel’s antinomy).

D. Mazza (LIPN) Attack of the Exponentials LL2016 20 / 26

Untyped nets

I In fact, cut-elimination in nets makes sense even without formulas!

cut

ax

?d

?c

!

ax

?d

?c

!

ax

?d

cut

I Untyped nets are a Turing-complete model of computation.
I Actually, the above net may be typed in presence of !R⊥ = R (Russel’s antinomy).

D. Mazza (LIPN) Attack of the Exponentials LL2016 20 / 26

Untyped nets

I In fact, cut-elimination in nets makes sense even without formulas!

cut

ax

?d

?c

!

ax

cut

ax

?d

?c

I Untyped nets are a Turing-complete model of computation.
I Actually, the above net may be typed in presence of !R⊥ = R (Russel’s antinomy).

D. Mazza (LIPN) Attack of the Exponentials LL2016 20 / 26

Untyped nets

I In fact, cut-elimination in nets makes sense even without formulas!

cut

ax

?d

?c

!

ax

?d

?c

I Untyped nets are a Turing-complete model of computation.
I Actually, the above net may be typed in presence of !R⊥ = R (Russel’s antinomy).

D. Mazza (LIPN) Attack of the Exponentials LL2016 20 / 26

Untyped nets

I In fact, cut-elimination in nets makes sense even without formulas!

cut

ax

?d

?c

!

ax

?d

?c

I Untyped nets are a Turing-complete model of computation.

I Actually, the above net may be typed in presence of !R⊥ = R (Russel’s antinomy).

D. Mazza (LIPN) Attack of the Exponentials LL2016 20 / 26

Untyped nets

I In fact, cut-elimination in nets makes sense even without formulas!

cut

ax

?d

?c

!

ax

?d

?c

I Untyped nets are a Turing-complete model of computation.
I Actually, the above net may be typed in presence of !R⊥ = R (Russel’s antinomy).

D. Mazza (LIPN) Attack of the Exponentials LL2016 20 / 26

Integers

Voilà the n-th (Church) numeral, denoted by n:

. . .

. . .

n︷ ︸︸ ︷

`

`

?c

?d

⊗ ⊗

?d

ax
ax

D. Mazza (LIPN) Attack of the Exponentials LL2016 21 / 26

Integers

What does the following net compute?

`

?d

?c

⊗

⊗

⊗

ax

ax

ax

ax

`

It is the successor function!

D. Mazza (LIPN) Attack of the Exponentials LL2016 22 / 26

Integers

Let’s find out!

. . .
?d

?c

⊗

⊗

⊗

ax

ax

ax

ax

`

`
cut

. . .

n︷ ︸︸ ︷

`

`

?c

?d

⊗ ⊗

?d

ax
ax

It is the successor function!

D. Mazza (LIPN) Attack of the Exponentials LL2016 22 / 26

Integers

Let’s find out!

cut

?d

?c

⊗

⊗

ax

ax

ax

ax

`

`

. . .

n︷ ︸︸ ︷ `

?c

?d

⊗ ⊗

?d

ax
ax

. . .

cut

It is the successor function!

D. Mazza (LIPN) Attack of the Exponentials LL2016 22 / 26

Integers

Let’s find out!

cut

?d

?c

⊗

⊗

ax

ax

ax

`

`

. . .

n︷ ︸︸ ︷ `

?c

?d

⊗ ⊗

?d

ax
ax

. . .

It is the successor function!

D. Mazza (LIPN) Attack of the Exponentials LL2016 22 / 26

Integers

Let’s find out!

cut
?d

?c

⊗

ax

ax

ax

`

`

. . .

n︷ ︸︸ ︷

?c

?d

⊗ ⊗

?d

ax
ax

. . .

cut

It is the successor function!

D. Mazza (LIPN) Attack of the Exponentials LL2016 22 / 26

Integers

Let’s find out!

cut
?d

?c

⊗

ax ax

`

`

. . .

n︷ ︸︸ ︷

?c

?d

⊗ ⊗

?d

ax
ax

. . .

It is the successor function!

D. Mazza (LIPN) Attack of the Exponentials LL2016 22 / 26

Integers

Let’s find out!

. . .
?d

?c

⊗

ax

`

`

. . .

n︷ ︸︸ ︷

?c

?d

⊗ ⊗

?d

ax
ax

It is the successor function!

D. Mazza (LIPN) Attack of the Exponentials LL2016 22 / 26

Heterodox exponentials

I Every occurrence of formula of the form ?A in a proof net may be assigned a
polynomial with non-negative integer coefficients:

?cax?A

0 1 p + q

p q p

pax

x · px

?w ?d

I Let Poly := (N[x], ◦, x) be the monoid of polynomials under composition.
I Any submonoid M ⊆ Poly induces a subsystem of linear logic (closed under

cut-elimination and proving ` ?A⊥, !A for all A), as follows:
Definition. Call an occurrence of ?A in a proof net final if it is not the
premise of a ?c or pax node. A proof net ρ belongs to MELLM just if,
whenever ?A is a final occurrence of ρ whose associated polynomial is p, we
have p ∈ M.

D. Mazza (LIPN) Attack of the Exponentials LL2016 23 / 26

Heterodox exponentials

!A(A⊗ · · · ⊗ A

ax + b
4LL

anxn + · · ·+ a1x or 0

LL
Poly

TLL

LLL
!(−) not monoidal

no diggingno dereliction

ELL
ax

!A(A⊗ !A
ax + b, a ≤ 1

PLL

SLL
x or b

D. Mazza (LIPN) Attack of the Exponentials LL2016 24 / 26

Heterodox exponentials

light logics

ax + b
4LL

anxn + · · ·+ a1x or 0

LL
Poly

TLL

LLL
!(−) not monoidal

no diggingno dereliction

ELL
ax

!A(A⊗ !A
ax + b, a ≤ 1

PLL

SLL
x or b

!A(A⊗ · · · ⊗ A

D. Mazza (LIPN) Attack of the Exponentials LL2016 24 / 26

Heterodox exponentials

light logics

ax + b
4LL

anxn + · · ·+ a1x or 0

LL
Poly

TLL

LLL
!(−) not monoidal

no diggingno dereliction

ELL
ax

!A(A⊗ !A
ax + b, a ≤ 1

PLL

SLL
x or b

!A(A⊗ · · · ⊗ A

parsimonious logic

D. Mazza (LIPN) Attack of the Exponentials LL2016 24 / 26

Implicit computational complexity

I Runtime = number of cut-elimination steps to normal form.
I Light logics have untyped cut-elimination:

ELL: characterizes elementary time
SLL: characterizes polynomial time
LLL: characterizes polynomial time

I Parsimonious logic (with !A ∼= A⊗ !A) is Turing-complete when untyped;
however:
propositional: characterizes logarithmic space
linear 2nd order: characterizes polynomial time

I Two different approaches:
stratification: (light logics) complexity is controlled globally;

parsimony: complexity is controlled locally.
I The parsimonious approach also opens the way to non-uniformity, via

approximations.

D. Mazza (LIPN) Attack of the Exponentials LL2016 25 / 26

Perspectives

I Approximations (exponentials as a limit):
I differential linear logic (DiLL) and Taylor expansion;
I affine approximations and complexity.

I Quantitative analyses:
I in DiLL, exponentials have non-deterministic cut-elimination;
I bounded linear logic (modalities parametriezed by semi-ring).

I Geometry of interaction: an execution model based on tokens moving along
proof nets.

D. Mazza (LIPN) Attack of the Exponentials LL2016 26 / 26

